Skiing and eating adventures in Chile!

Posted on October 24, 2014 by Skratch Labs | 0 Comments

Donny Roth is a Skratch Labs ambassador who believes in human-powered skiing (climbing to the top vs. using a chairlift). He believes there is more to skiing than simply going down hill. It's not all about the down, nor is it all about the up. Skiing and guiding for Donny is about the adventures, education and experiences. The following blog, written by Donny, sheds light on what a week of skiing and eating in Chile is like. 

Very few people go all the way to Chile to ski for a day.  Most folks come down for a week or so.  The most common trip I guide is skiing several volcanoes over a week.  We spend a little time each day learning new skills or refreshing techniques from the past season.  Everyone gets a refresher on beacon use and skins, and most everyone uses ski crampons for the first time.  What most people don't expect is how much emphasis I put on food, nutrition and hydration.  

There is a huge difference between skiing for a week and skiing for a weekend.  People like going to the office on Monday feeling a little worked from the weekend's activity. The sore quads and core sort of adds a little value, like you got the most for your money.  Trying to ski everyday for a week is much more like a stage race then a crit. If you bonk early on, you spend the rest of the time trying to catch up.  This isn't the best way to get the most out of your week long skiing vacation.

There are numerous challenges to eating well in Chile, which makes it an adventure of its own!  The first is that there is nothing close to a Whole Foods or other markets that stock every type of pre-packaged or pre-prepared food imaginable. Simply running into a store and picking up things that look like portables is not an option.  The only things available ready-made will be cookies, candy bars, empanadas and sopapillas – which can be delightful, I must admit.  To eat well, one has to make their own portables.  This is where the adventure begins. First, ingredients can be limited and inconsistent.  What you find in Santiago will be much different than what is found in Puerto Montt in the south.  Looking for organic berries in the middle of winter?  Ha!  Forget it.  Your favorite hot sauce?  Hope you got it through customs.  The other hurdle is that kitchens can be very, very different from place to place.  Some places challenge your image of a kitchen entirely. It is for these reasons that I travel with a small kitchen kit – everything from knives and cutting boards to baking pans and muffin tins.  Sometimes I even have my camping stove as backup.  

These obstacles can be overcome, with a little planning,  When my clients are going to ski everyday, averaging between four and five thousand vertical feet of climbing each day, then we need to consume calories.  Consuming 2000 calories of candy bars and empanadas would be gross.  It’s for these reasons that we make portables from scratch. Its been said that a picture is worth a thousand words. To give you a better visual and idea of what it’s like skiing and living in Chile, here are some photos and descriptions that capture some of the adventures of cooking in Chile.  After eleven winters in Chile, I really look forward to the challenge of cooking real food. Each season I continue to be pushed to think outside the wrapper.



This is one of my favorite vegetable markets in the country. In the major cities there are big supermarkets, which look identical to big U.S. chains, but the produce tends to on the very commercial scale – local and organic hasn't caught on yet.  These veggies are at least local and fresh.


 This is a sampling of typical touring food. Far-left: Baked eggs with breadcrumbs, bacon and cheese. Top Pan: Rice cakes with peanuts, chocolate chips and a touch of manjar; Center Plate: Spinach frittatas. Far Right Pan: Bacon bread bars.  


These are some of the special moments. When the owners of the hotel let me share their kitchen, which meant I got to learn new recipes and partake in making these cookies, along with this little girl.


Cooking on a wood-fired stove is actually pretty fun and not as hard as I thought it would be.  But it's certainly not instant heat!


Empanadas! This is the national food of Chile. They are traditionally filled with beef, onions, half a hard-boiled egg and one olive. I don't find this to be the most palatable while touring, but the concept is the ultimate portable. I like them filled with a spiced pear filling. Awesome!


This isn't typical, but it is a possibility. Sometimes the kitchen is a tent. Freeze-dried food sucks, unlike the views. It takes a little prep and planning; but we still eat well up here.


 Breakfast while camped just below snow line.  Warm oatmeal and real coffee to start the day.


After cooking on camping stoves and wood stoves, I feel like a hero in even the simplest kitchen.  A morning feast means the clients have no excuses.  Eggs over quinoa and topped with cheese and veggies, fresh frittatas for the way out the door and chocolate for later.

Sweet Rice Porridge: A Delicious Feed Zone Breakfast

Posted on September 29, 2014 by Skratch Labs | 0 Comments

Sweet Rice Porridge is a clever recipe from The Feed Zone Cookbook that blends quick-absorbing carbs from white rice with the satisfying whole proteins found in eggs. Add bananas for some bonus carbs and potassium — or whatever fruit or nut you’d prefer, get creative and have some fun with the flavors— and you’ll enjoy a tasty, simple breakfast that will power-up your morning workout.

This porridge recipe is also a great way to put leftover rice to good use.



Timing: 5-10 minutes

Servings: 2


1 1/2 cups milk

1 egg yolk

1 cup cooked rice

1 ripe banana, sliced

1 teaspoon vanilla extract

1 teaspoon brown sugar

2 tablespoons brown sugar

dash each of salt and ground cinnamon

fresh berries (optional)

Mixing / Serving

1. Whisk together milk and egg yolk in a medium pot, then heat gently

2. Add the cooked rice, banana, vanilla, brown sugar, salt and cinnamon. Cook and stir for 5-10 minutes or until mixture comes to a gentle boil. 

3. Transfer to a bowl or plate and top with fresh berries/fruit, if desired. 

You can download this recipe for free...really for FREE...Here

Posted in Recipes

Sweet Goodness in Your Pocket: Fig and Honey Rice Cakes:

Posted on August 29, 2014 by Skratch Labs | 0 Comments

Allen and Biju have put a gluten-free spin on the classic fig cookies that many of us grew up eating. These rice cakes make a sweet portable snack, but because of the excellent fiber that is in the dried fruit, they work even better as a snack following a workout or between meals. If figs aren’t your favorite, try raisins, craisins or dates instead.



SERVINGS: About 10 rice cakes

Timing: 25-30 minutes

2 cups uncooked calrose rice or other medium-grain “sticky” rice

1 1/2 Cups Water

1 Cup toasted pecans

1 cup chopped dried figs

tablespoons honey 

Brown Sugar (optional)

Mixing Instructions

1. Combine rice and water in a rice cooker

2. To toast the nuts: Heat oven to 350 degrees. Place the pecans on a baking sheet and toast 8-10 minutes. Stirring after 5 minutes.

3. In a large bowl, combine the cooked rice, pecans and figs. Add the honey and stir thoroughly. Add more honey to taste, if desired

4. Press mixture into an 8 or 9 inch square pan to about 1 1/2-inch thickness and sprinkle with brown sugar, if desired. 

Cut and wrap the individual cakes. Enjoy! 

Click here to download the complete recipe

Posted in Recipes

Mountain Bike Race Nutrition at the Breck Epic

Posted on August 26, 2014 by Skratch Labs | 0 Comments

From Vince Anderson

Mountain Bike Stage Race Nutrition: A Whole Different Kind of Animal! I just finished racing in the Breck Epic, a six-day mountain bike stage race held annually in Breckenridge, Colorado. It was my 5th time racing in this event. My weapon of choice this time as always was a single speed, bike. One gear. Each stage took 2 ½ - 4 hours to complete and were mostly (for me) full gas the entire time. Obviously, with any single event of that duration and intensity, one’s nutritional strategy is crucial; much more so when doing it for multiple days in a row. Over the five times I’ve raced it, I’ve learned a few things that seem to work for me in this department.

First and foremost, I have to say that racing a mountain bike is entirely different from racing a road bike: it is physically much more difficult to take your hands off your handle bars at almost any time, making eating and drinking a real challenge. Also, I’ve done a lot of multi-day alpine climbs and have learned a lot from that regarding nutrition and recovery, but that is WAY different from bike racing for just a few hours a day at much higher intensity. Alpine climbing involves quite a bit more long, slow endurance paced efforts, punctuated by the occasional brief, powerful moves needed to overcome climbing cruxes. My average heart rate for a bike race is right at or just below the red line for the entirety. It feels like I’m going all out for the entire time. The intensity needed to maintain speed and control on rocky, technical descents does not offer much in the way of respite, either. Additionally, on a single speed, the few flat sections encountered have to be done at ridiculously high rpm’s to stay with any of the geared riders if one wants to enjoy the windless protection from inside a peloton. Simply put, racing single speed mountain bike is physically more intense, but far less scary than doing an alpine climb. As a result, I’ve had to make some readjustments to my time tested nutritional strategies I’ve used on my numerous alpine adventures.

The main things I’ve identified as keys to nutritional success are what, when and how? The what. This is something that has not changed too much from my alpine climbing: I like real food. Though, I’ve had my share of gels, and nutritional drinks, I’ve found that nothing works as well for me as eating real food. In other words, I eat for calories and drink for hydration and try not to mix the two into one seemingly convenient, easy to consume meal replacement drink. I’m a huge advocate of good micro nutrients like vitamins, minerals, amino and fatty acids, but feel these are best found by getting them from the right food in your regular meals. I really don’t take much additional supplements save for some fish oil pills (to ensure enough Omega 3’s) since I just can’t get enough good fresh fish here in the Western Colorado desert. I try to have a well balanced, healthy diet every day. When I’m racing, I try to do the same, but, obviously, need foods that are easier to digest and get down. I’ve found that rice cakes and balls, simple sweet sandwiches and things like that give me the best fuel compared to energy bars or gels. Proper hydration is the other part of this equation. I don’t like to drink my calories. I like to eat them. That does not mean I’m into plain water. I want something that will keep me hydrated and maintain my electrolyte levels. I used to mess around with trying to make my own hydration mix. I used a combination of water, table salt, orange juice, honey and green tea. This was pretty good, but honestly, I just did not often take the time to mix it up and would find myself usually scooping out one of the powdered drink mixes available from the store. Most of them tasted too sugary for me and would make me feel bloated or even nauseous. I would do the calculations as to how much water I needed for a given event and bring the appropriate amount of liquid with me, but rarely found I was able to drink what I had planned, either because of physical difficult in doing so (more on that in a minute) or, more likely, because I did not want to drink it. A guide student of mine introduced me to Skratch drink mix several years ago and I was hooked instantly. I find the lightly sweetened taste much more palatable to me when riding hard. The electrolyte replacement and low calorie (relative to other drink mixes) composition also sets well with my stomach and keeps me thirsty for more. Most importantly, I LOVE that it is made from REAL food and not a lot of artificial ingredients and special additives that other drink mixes are. It is just real fruit, sugar, salts and stuff like that.

For the Breck Epic, I tried the new Matcha + Lemons flavor and thought it the best I’ve yet to try. Matcha is a kind of fine ground green tea that easily dissolves in water. It reminds me a bit of my own concoction using green tea that I used to make. There are naturally occurring anti-oxidants in green tea and some (not a lot) caffeine. I’ve had mixed luck with caffeine while racing or climbing. I do think it helps my endurance (for a variety of reasons), but too much of it has also made my stomach go bonkers and so I try to be careful with how much I ingest and when. So the Matcha + Lemons mix really hit the spot for me. All week at the Breck Epic I rarely, if ever finished with a still partially full water bottle. Given the opportunity to drink, I would easily get down all that I had planned on consuming, something I’ve not done in the past. This stuff tastes good, keeps me well hydrated and does not upset my stomach. Also, I really enjoyed the mild caffeination to help keep me going for the longer stages of the race.

The When. Okay, so that’s what I’ve found works well for me as far as what to eat and drink. That is the part that makes sense on paper. The other part I’ve found to be challenging is when to eat during a race. As I mentioned, going full gas up and down a mountain bike racecourse is not conducive to taking hands off the bars to feed and hydrate yourself. I’ve found it of utmost importance to plan, either by pre-riding or good map assessment, the race in terms of when eating and drinking opportunities will occur. Slower, non-technical ascents work well. The transition from up to down often gives a moment to feed. Flats work. Feed zones and aid stations are usually worth the short stop to get food and water on board (and refill). I take a lot of time looking over the course maps and profiles to figure out when I can get food on board. I’ve found that sometimes they are sooner than ideal, but it is better to take advantage of those spots than to go too far and run into and energy deficit from which you can not dig out. With a muti-day race like the Breck Epic, this is even more important, since what you eat today often aids recovery and provides energy for tomorrow. This is much like alpine climbing, where you have to eat and drink on the belay ledges or other stopping points to avoid bonking while your on lead or climbing.

The how. This may seem trivial, but how to eat has proven to be as important as anything else for me in mountain bike racing and, to a certain extent, has dictated what I eat. As I mentioned, it is so hard to take your hands off the bars to do anything, even scratch your nose or adjust your glasses, so eating has to be as simple as you can make it. Another complicating factor is that if you’re going at your max, you’re going to be breathing like a racehorse. Stuffing food into your biggest airway does not help the breathing. This is one reason why gels are so popular: they are very easy to get from package to stomach. I’ve gone for the simplest to unwrap and easiest to chew foods I can find. I’ve made my own rice porridge type gels and put them in gel flasks. I make simple sandwiches and rice balls, as well. Either way, getting them from jersey to mouth is just half the battle. The next challenge is chewing, something that is taken for granted. Your mouth my host its own competition between food and air for which is going to get through. I have to really focus on chewing and sometimes (this may sound gross) just leave food in the side of my mouth, chew a little, breath some more, chew a little more and so on until I can swallow it. It is not necessarily proper manners, but it works for me to get the food down the gullet, into the stomach and on it’s way to giving me more horsepower. Sometimes, I even find I have to let off the gas a little to get the food down. It is worth the few extra seconds of slowing down in a long race to ensure that you can maintain proper energy levels throughout the duration.

I used to finish races with partially full water bottles and lots of food in my jersey pockets. Between the upset stomach from too sugary drinks and the difficulty of eating, I just did not take good care of myself and would finish feeling completely wrecked. After several years of trying different strategies, I’m convinced that eating real food and drinking Skratch has helped me do far better in the nutritional department for mountain bike races, especially for The Breck Epic. 


Vince is a third generation native of Colorado who climbed his first mountain at age five, started skiing at eight, and has called the mountains home his entire life. When he is not out guiding, climbing, skiing, he can often be found on the bike with his wife and three sons in Grand Junction, Colorado. Check him out -

Follow Vince:

What is Matcha Green Tea and Why is it in a Sports Drink?

Posted on August 19, 2014 by Allen Lim, PhD | 1 Comment

     At Skratch Labs, all of our hydration products are driven by science but crafted and sold as real food, not as supplements. While it’s a subtle distinction for some, it’s a fundamental difference that defines everything we do. For example, we are meticulous about the formula in our Exercise Hydration Mix, making sure that we have an electrolyte ratio that best matches what we lose in sweat and a blend of sugars that optimizes absorption in the small intestine to prevent gastrointestinal distress (i.e., gut rot). At the same time, none of our drink mixes contain flavoring agents or artificial ingredients. Instead, we use whole functional foods that have been dried and crushed like raspberries, oranges, lemons, mangos, and pineapples to flavor and enrich our line. This gives all of our drinks a simple and clean taste that hydrates us while also providing the nutritional benefits associated with the foods we use. Most recently, we took this a step further by developing a flavor using Matcha – a type of green tea that is consumed whole rather than brewed, making it convenient and incredibly nutrient dense compared to other teas.


     Like many plant-based foods, tea is a functional food. A functional food contains essential nutrients like carbohydrate, fat, protein, vitamins, and minerals as well as biologically active compounds that affect one’s physiology and that can contribute to disease prevention (Hayat, 2013; Deldicque, 2008).  The natural compounds in foods that are not essential nutrients but that are important to our health are referred to as phytochemicals or phytonutrients. Phytochemicals in turn have a broad and complex classification system that has generated a litany of jargon in the marketing and science surrounding functional foods as well as an equivalent amount of confusion when it comes to understanding what we are actually consuming and whether it’s actually good for us. 


     For now, I’ll skip out on describing all of the classes of phytochemicals but mention the ones that are more common and relevant to tea. For example, one class of phytochemicals are alkaloids that include caffeine and caffeine-like compounds like theobromine and theophylline found in tea, coffee, and cocoa. Another class of phytochemicals are polyphenols which are further categorized into non-flavonoids and flavonoid compounds. Non-flavonoids include compounds like reseveratrol common to grapes and wine while flavonoids include compounds like anthocyanins, quercitin, and tanins, which can be further classified into catechins or flavan-3-ols. It’s these catechins that are specifically found in high quantities in tea and which can be further broken down into four major types of catechins in tea including epigallocatechin-3-gallate (EGCG), epigallocatechin (EGC), epicatechin-3-gallate (ECG), and epicatechin (EC) that are the compounds that impart many of the health benefits associated with tea (Kim, 2014). 


     While all of these names are confusing all by themselves, the confusion is often confounded because when people describe a particular phytochemical, it’s common to use the different names within a particular class as synonyms for one another. For example, EGCG can be described as a catechin. A catechin can be described as a tannin. A tannin can be described as a flavonoid. A flavonoid can be described as a polyphenol. And finally, a polyphenol can be described as a phytochemical.  To keep things easy and coming full circle, we’ll just describe good things in food that aren’t essential nutrients as phytonutrients and only talk about specific compound like the caffeine or EGCG in tea when appropriate.


     With that in mind, the reason that phytonutrients in tea, specifically, catechins like EGCG have physiological significance and a number of health benefits is because they have an incredible array of unique attributes that include anti-oxidative (Jowko, 2011; Panza, 2008), anti-inflammatory (Hagiwara, 2014; Haramizu, 2013; Nicod, 2014), anti-carcinogenic (Sato, 1999; Siddiqui, 2014), anti-hypertensive (Khalesi, 2014; Mousavi, 2013; Onakypoya, 2014), anti-microbial (Hagiwara, 2014; Lin, 2014; Pang, 2014), neuro-protective (Noguchi-Shinohara, 2014), DNA protective (Ho, 2014), cholesterol lowering (Eichenberger, 2009; Kono 1996; Onakypoya, 2014; Yousaf, 2014), and thermogenic or metabolism increasing properties (Hodgson, 2013; Jeukendrup, 2011). And ultimately, all of these things are good things, especially when reviewing the wide array of research studies describing health benefits for specific diseases like cardiovascular disease (Ghanbari, 2014; Santesso, 2014), cancer (Butt, 2013; Green, 2014; Greenberg, 2013; Huang, 2014; Inoue, 1998; Wang, 2014), urinary tract infections (Katz, 2014), type II diabetes (Pham, 2014; Venables, 2008), arthritis (Byun, 2014; Yang, 2014; Riegsecker, 2013), stroke (Nabavi, 2014), obesity (Byun, 2014), dental diseases (Gaur, 2014), neurodegenerative diseases like Parkinson’s (Qi, 2014; Gao, 2013; Albarracin, 2012; Tanaka, 2011), and dermatological issues (Scheinfeld, 2013; Pazyar, 2012). 


     Beyond these disease preventing properties, tea also can act as a stimulant due to naturally occurring caffeine as well as an amino acid called L-theanine, which has been show to be a mood stabilizer, working synergistically with caffeine to improve focus (Yoto, 2014; Camfield, 2014; Ross. 2014; Giesbrecht, 2010).  And while much has been made about caffeine as a performance enhancer due to its ability to mobilize free fatty acids (Jeukendrup, 2011), improve alertness (Beaven, 2013), and enhance glycogen re-synthesis (Beelen, 2012; Taylor, 2011) it’s also clear that those effects only come at high doses of caffeine (3-6 mg per kg of body weight) and are better if you are unaccustomed to caffeine (Burke, 2008; Ganio, 2009; Deldicque, 2008). In addition, it’s also clear that at very high doses, caffeine can have negative affects ranging from sleep disturbance to anxiety to cardiovascular complications (Youngstedt, 1998, 2000; Rogers, 2013; Chrysant, 2014).


     From an exercise standpoint, there’s less evidence that phytonutrients beyond caffeine like catechins in tea are beneficial to actual performance. That said, some studies in mice have shown improved endurance capacity in mice associated with EGCG supplementation resulting from an increase in fat use (Murase, 2005) as well as less of an age related decline in endurance performance (Murase, 2008). Interestingly, one in vitro (outside of the body) study has shown that EGCG can help prevent muscle wasting (Mirza, 2014) which may have implications for humans during exercise or in recovery from exercise, though those implications may be a bit of a stretch, especially since actual benefits in exercising humans are unclear. For example, a single 640 mg dose of EGCG in soccer players showed no reduction in oxidative stress or muscle damage (Jowko, 2012). An acute dose of green tea catechins (22 mg per kg of body weight), however, immediately after exercise in Tae Kwon did show improvements in immune function (Lin, 2014). Finally, in one human study, short term consumption (945 mg over 48 hours) of EGCG has been shown to increase maximal oxygen consumption without changes in cardiac output, hinting a greater ability of muscle to extract oxygen (Richards, 2010). Unfortunately, much more research is needed to bear out any real world performance benefits.


     That all said, we weren’t just thinking about the potential health or performance benefits of tea when we developed our newest Exercise Hydration Mix that contains Matcha – a type of green tea. For what it’s worth, like many people, we just like tea. We like the way it tastes and how it makes us feel. Unfortunately, we don’t always have the time or resources to brew it. This is where Matcha comes in. Like all other teas, Matcha comes from the plant Camillia Sinensis. There are three basic types of tea – green, oolong, and black tea. They’re distinguished by whether the plants are allowed to ferment before drying. Green tea is unfermented, oolong is partially fermented and black tea is fermented. The fermentation process changes the amount of phytonutrients available. For example, black tea is higher in caffeine than green or oolong, but green tea is higher in catechins like EGCG than either oolong or black tea. Unlike other teas, Matcha is unique because it’s grown in the shade, significantly increasing its chlorophyll content—the component in plants that make them green and that may also add to the positive health benefits of tea (Jiang, 2013). In addition, Matcha is not brewed. Instead, the entire leaf is ground into a powder and consumed whole. Because the entire leaf is consumed, this increases the amount of phytonutrients that can be consumed and concentrated into a drink, compared to brewed tea. But most importantly, because Matcha is a powder it’s actually possible to blend it into a drink mix making it a convenient and highly functional ingredient.


     A single 16 oz serving of our Exercise Hydration Mix with Matcha + Lemons contains about 500 mg of whole ground Matcha. Traditionally, if someone were making a 16 oz serving of Matcha tea, they might use about 2000 mg or a teaspoon of whole Matcha powder. So per serving we’re about a quarter of a typical serving of Matcha that someone might traditionally consume. The reason we did this is that our assumption is that during prolonged exercise someone might consume multiple servings of our Exercise Hydration Mix and we wanted to make sure that people didn’t over-consume Matcha relative to what’s traditionally consumed. In addition, this helps to keep the overall flavor profile light and prevents the overly tannic taste profile that is common when drinking Matcha and other teas. This also means that the amount of caffeine per serving is lower at approximately 16 mg per 16 oz serving. As a point of reference an 8 oz cup of coffee might have anywhere from 70-100 mg of caffeine whereas a typical 8 oz cup of Matcha tea might have about 30-40 mg of caffeine. While the amount of caffeine in our Exercise Hydration Mix with Matcha + Lemons is not high, it is there and it is natural with 5 servings equaling a cup of coffee. Over the course of a long day, this small amount can add up if someone is consuming enough to keep hydrated, which is the ultimate purpose of our line of Exercise Hydration mixes.


     Although it’s nice to know that teas, in particular, green teas like Matcha have a host of potential health benefits (Hayat, 2013), it’s unlikely that a single drink of anything is likely to improve performance or health (Jowko, 2012; Randell, 2013). The reality is that we never intended nor do we think that our Exercise Hydration Mix with Matcha + Lemons is, by itself, a panacea for poor health or performance. Like all things in life, it’s important to always look at the big picture when thinking about one’s well being. That picture includes one’s overall diet, physical activity, stress level, social support, sleep and innumerable other factors spread over a lifetime. Ultimately, what we believe is that using whole food ingredients with known functional benefits is just better than the common practice of using artificial ingredients like coloring agents, emulsifiers, and synthetic sweeteners that may actually be harmful to our health (Simmons, 2014). By using Matcha we don’t just get a functional food, we get an incredible and refreshing taste that helps to encourage drinking and that keeps us hydrated with all of the potential upsides of real tea.



1. Albarracin, S. L., Stab, B., Casas, Z., Sutachan, J. J., Samudio, I., Gonzalez, J. et al. (2012). Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci, 15(1), 1-9.
2. Beaven, C. M., & Ekstrom, J. (2013). A comparison of blue light and caffeine effects on cognitive function and alertness in humans. PLoS One, 8(10), e76707.
3. Beelen, M., Kranenburg, J., Senden, J. M., Kuipers, H., & Loon, L. J. (2012). Impact of caffeine and protein on postexercise muscle glycogen synthesis. Med Sci Sports Exerc, 44(4), 692-700.
4. Burke, L. M. (2008). Caffeine and sports performance. Appl Physiol Nutr Metab, 33(6), 1319-1334.
5. Butt, M. S., Ahmad, R. S., Sultan, M. T., Nasir Qayyum, M. M., & Naz, A. (2013). Green tea and anticancer perspectives: Updates from last decade. Crit Rev Food Sci Nutr.
6. Byun, J. K., Yoon, B. Y., Jhun, J. Y., Oh, H. J., Kim, E. K., Min, J. K. et al. (2014). Epigallocatechin-3-gallate ameliorates both obesity and autoinflammatory arthritis aggravated by obesity by altering the balance among CD4+ T-cell subsets. Immunol Lett, 157(1-2), 51-59.
7. Camfield, D. A., Stough, C., Farrimond, J., & Scholey, A. B. (2014). Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and meta-analysis. Nutr Rev, 72(8), 507-522.
8. Chrysant, S. G., & Chrysant, G. S. (2014). Cardiovascular complications from consumption of high energy drinks: recent evidence. J Hum Hypertens.
9. Deldicque, L., & Francaux, M. (2008). Functional food for exercise performance: fact or foe? Curr Opin Clin Nutr Metab Care, 11(6), 774-781.
10. Eichenberger, P., Colombani, P. C., & Mettler, S. (2009). Effects of 3-week consumption of green tea extracts on whole-body metabolism during cycling exercise in endurance-trained men. Int J Vitam Nutr Res, 79(1), 24-33.
11. Ganio, M. S., Klau, J. F., Casa, D. J., Armstrong, L. E., & Maresh, C. M. (2009). Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res, 23(1), 315-324.
12. Gao, X., Cassidy, A., Schwarzschild, M. A., Rimm, E. B., & Ascherio, A. (2012). Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology, 78(15), 1138-1145.
13. Gaur, S., & Agnihotri, R. (2014). Green tea: a novel functional food for the oral health of older adults. Geriatr Gerontol Int, 14(2), 238-250.
14. Ghanbari, B., Khaleghparast, S., Ghadrdoost, B., & Bakhshandeh, H. (2014). Nutritional status and coronary artery disease: a cross sectional study. Iran Red Crescent Med J, 16(3), e13841.
15. Giesbrecht, T., Rycroft, J. A., Rowson, M. J., & De Bruin, E. A. (2010). The combination of L-theanine and caffeine improves cognitive performance and increases subjective alertness. Nutr Neurosci, 13(6), 283-290.
16. Green, C. J., de Dauwe, P., Boyle, T., Tabatabaei, S. M., Fritschi, L., & Heyworth, J. S. (2014). Tea, coffee, and milk consumption and colorectal cancer risk. J Epidemiol, 24(2), 146-153.
17. Greenberg, A. K., Tsay, J. C., Tchou-Wong, K. M., Jorgensen, A., & Rom, W. N. (2013). Chemoprevention of lung cancer: prospects and disappointments in human clinical trials. Cancers (Basel), 5(1), 131-148.
18. Hagiwara, M., & Matsushita, K. (2014). Epigallocatechin gallate suppresses LPS endocytosis and nitric oxide production by reducing Rab5-caveolin-1 interaction. Biomed Res, 35(2), 145-151.
19. Haramizu, S., Ota, N., Hase, T., & Murase, T. (2013). Catechins suppress muscle inflammation and hasten performance recovery after exercise. Med Sci Sports Exerc, 45(9), 1694-1702.
20. Hayat, K., Iqbal, H., Malik, U., Bilal, U., & Mushtaq, S. (2013). Tea and its consumption: benefits and risks. Crit Rev Food Sci Nutr.
21. Ho, C. K., Choi, S. W., Siu, P. M., & Benzie, I. F. (2014). Effects of single dose and regular intake of green tea (Camellia sinensis) on DNA damage, DNA repair, and heme oxygenase-1 expression in a randomized controlled human supplementation study. Mol Nutr Food Res, 58(6), 1379-1383.
22. Hodgson, A. B., Randell, R. K., Boon, N., Garczarek, U., Mela, D. J., Jeukendrup, A. E. et al. (2013). Metabolic response to green tea extract during rest and moderate-intensity exercise. J Nutr Biochem, 24(1), 325-334.
23. Huang, C. C., Lee, W. T., Tsai, S. T., Ou, C. Y., Lo, H. I., Wong, T. Y. et al. (2014). Tea consumption and risk of head and neck cancer. PLoS One, 9(5), e96507.
24. Inoue, M., Tajima, K., Hirose, K., Hamajima, N., Takezaki, T., Kuroishi, T. et al. (1998). Tea and coffee consumption and the risk of digestive tract cancers: data from a comparative case-referent study in Japan. Cancer Causes Control, 9(2), 209-216.
25. Jeukendrup, A. E., & Randell, R. (2011). Fat burners: nutrition supplements that increase fat metabolism. Obes Rev, 12(10), 841-851.
26. Jiang, H., & Xiao, J. B. (2013). A review on the structure-function relationship aspect of polysaccharides from tea materials. Crit Rev Food Sci Nutr.
27. Jowko, E., Sacharuk, J., Balasinska, B., Ostaszewski, P., Charmas, M., & Charmas, R. (2011). Green tea extract supplementation gives protection against exercise-induced oxidative damage in healthy men. Nutr Res, 31(11), 813-821.
28. Jowko, E., Sacharuk, J., Balasinska, B., Wilczak, J., Charmas, M., Ostaszewski, P. et al. (2012). Effect of a single dose of green tea polyphenols on the blood markers of exercise-induced oxidative stress in soccer players. Int J Sport Nutr Exerc Metab, 22(6), 486-496.
29. Katz, A., Efros, M., Kaminetsky, J., Herrlinger, K., Chirouzes, D., & Ceddia, M. (2014). A green and black tea extract benefits urological health in men with lower urinary tract symptoms. Ther Adv Urol, 6(3), 89-96.
30. Khalesi, S., Sun, J., Buys, N., Jamshidi, A., Nikbakht-Nasrabadi, E., & Khosravi-Boroujeni, H. (2014). Green tea catechins and blood pressure: a systematic review and meta-analysis of randomised controlled trials. Eur J Nutr.
31. Kim, H. S., Quon, M. J., & Kim, J. A. (2014). New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol, 2, 187-195.
32. Kono, S., Shinchi, K., Wakabayashi, K., Honjo, S., Todoroki, I., Sakurai, Y. et al. (1996). Relation of green tea consumption to serum lipids and lipoproteins in Japanese men. J Epidemiol, 6(3), 128-133.
33. Lin, S. P., Li, C. Y., Suzuki, K., Chang, C. K., Chou, K. M., & Fang, S. H. (2014). Green tea consumption after intense taekwondo training enhances salivary defense factors and antibacterial capacity. PLoS One, 9(1), e87580.
34. Mirza, K. A., Pereira, S. L., Edens, N. K., & Tisdale, M. J. (2014). Attenuation of muscle wasting in murine CC myotubes by epigallocatechin-3-gallate. J Cachexia Sarcopenia Muscle.
35. Mousavi, A., Vafa, M., Neyestani, T., Khamseh, M., & Hoseini, F. (2013). The effects of green tea consumption on metabolic and anthropometric indices in patients with Type 2 diabetes. J Res Med Sci, 18(12), 1080-1086.
36. Murase, T., Haramizu, S., Ota, N., & Hase, T. (2008). Tea catechin ingestion combined with habitual exercise suppresses the aging-associated decline in physical performance in senescence-accelerated mice. Am J Physiol Regul Integr Comp Physiol, 295(1), R281-R289.
37. Murase, T., Haramizu, S., Shimotoyodome, A., Nagasawa, A., & Tokimitsu, I. (2005). Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. Am J Physiol Regul Integr Comp Physiol, 288(3), R708-R715.
38. Nabavi, S. M., Daglia, M., Moghaddam, A. H., Nabavi, S. F., & Curti, V. (2014). Tea Consumption and Risk of Ischemic Stroke: a Brief Review of the Literature. Curr Pharm Biotechnol.
39. Nicod, N., Chiva-Blanch, G., Giordano, E., Davalos, A., Parker, R. S., & Visioli, F. (2014). Green tea, cocoa, and red wine polyphenols moderately modulate intestinal inflammation and do not increase high-density lipoprotein (HDL) production. J Agric Food Chem, 62(10), 2228-2232.
40. Noguchi-Shinohara, M., Yuki, S., Dohmoto, C., Ikeda, Y., Samuraki, M., Iwasa, K. et al. (2014). Consumption of green tea, but not black tea or coffee, is associated with reduced risk of cognitive decline. PLoS One, 9(5), e96013.
41. Onakpoya, I., Spencer, E., Heneghan, C., & Thompson, M. (2014). The effect of green tea on blood pressure and lipid profile: A systematic review and meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis.
42. Pang, J. Y., Zhao, K. J., Wang, J. B., Ma, Z. J., & Xiao, X. H. (2014). Green tea polyphenol, epigallocatechin-3-gallate, possesses the antiviral activity necessary to fight against the hepatitis B virus replication in vitro. J Zhejiang Univ Sci B, 15(6), 533-539.
43. Panza, V. S., Wazlawik, E., Ricardo Schutz, G., Comin, L., Hecht, K. C., & da Silva, E. L. (2008). Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition, 24(5), 433-442.
44. Pazyar, N., Feily, A., & Kazerouni, A. (2012). Green tea in dermatology. Skinmed, 10(6), 352-355.
45. Pham, N. M., Nanri, A., Kochi, T., Kuwahara, K., Tsuruoka, H., Kurotani, K. et al. (2014). Coffee and green tea consumption is associated with insulin resistance in Japanese adults. Metabolism, 63(3), 400-408.
46. Qi, H., & Li, S. (2014). Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr Gerontol Int, 14(2), 430-439.
47. Randell, R. K., Hodgson, A. B., Lotito, S. B., Jacobs, D. M., Boon, N., Mela, D. J. et al. (2013). No effect of 1 or 7 d of green tea extract ingestion on fat oxidation during exercise. Med Sci Sports Exerc, 45(5), 883-891.
48. Richards, J. C., Lonac, M. C., Johnson, T. K., Schweder, M. M., & Bell, C. (2010). Epigallocatechin-3-gallate increases maximal oxygen uptake in adult humans. Med Sci Sports Exerc, 42(4), 739-744.
49. Riegsecker, S., Wiczynski, D., Kaplan, M. J., & Ahmed, S. (2013). Potential benefits of green tea polyphenol EGCG in the prevention and treatment of vascular inflammation in rheumatoid arthritis. Life Sci, 93(8), 307-312.
50. Rogers, P. J., Heatherley, S. V., Mullings, E. L., & Smith, J. E. (2013). Faster but not smarter: effects of caffeine and caffeine withdrawal on alertness and performance. Psychopharmacology (Berl), 226(2), 229-240.
51. Ross, S. M. (2014). L-theanine (suntheanin): effects of L-theanine, an amino acid derived from Camellia sinensis (green tea), on stress response parameters. Holist Nurs Pract, 28(1), 65-68.
52. Santesso, N., & Manheimer, E. (2014). A summary of a cochrane review: green and black tea for the primary prevention of cardiovascular disease. Glob Adv Health Med, 3(2), 66-67.
53. Sato, D. (1999). Inhibition of urinary bladder tumors induced by N-butyl-N-(4-hydroxybutyl)-nitrosamine in rats by green tea. Int J Urol, 6(2), 93-99.
54. Scheinfeld, N. (2013). Update on the treatment of genital warts. Dermatol Online J, 19(6), 18559.
55. Siddiqui, I. A., Bharali, D. J., Nihal, M., Adhami, V. M., Khan, N., Chamcheu, J. C. et al. (2014). Excellent anti-proliferative and pro-apoptotic effects of (-)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine.
56. Simmons, A. L., Schlezinger, J. J., & Corkey, B. E. (2014). What Are We Putting in Our Food That Is Making Us Fat? Food Additives, Contaminants, and Other Putative Contributors to Obesity. Curr Obes Rep, 3(2), 273-285.
57. Tanaka, K., Miyake, Y., Fukushima, W., Sasaki, S., Kiyohara, C., Tsuboi, Y. et al. (2011). Intake of Japanese and Chinese teas reduces risk of Parkinson’s disease. Parkinsonism Relat Disord, 17(6), 446-450.
58. Taylor, C., Higham, D., Close, G. L., & Morton, J. P. (2011). The effect of adding caffeine to postexercise carbohydrate feeding on subsequent high-intensity interval-running capacity compared with carbohydrate alone. Int J Sport Nutr Exerc Metab, 21(5), 410-416.
59. Venables, M. C., Hulston, C. J., Cox, H. R., & Jeukendrup, A. E. (2008). Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. Am J Clin Nutr, 87(3), 778-784.
60. Wang, W., Yang, Y., Zhang, W., & Wu, W. (2014). Association of tea consumption and the risk of oral cancer: a meta-analysis. Oral Oncol, 50(4), 276-281.
61. Yang, E. J., Lee, J., Lee, S. Y., Kim, E. K., Moon, Y. M., Jung, Y. O. et al. (2014). EGCG attenuates autoimmune arthritis by inhibition of STAT3 and HIF-1alpha with Th17/Treg control. PLoS One, 9(2), e86062.
62. Yoto, A., Murao, S., Nakamura, Y., & Yokogoshi, H. (2014). Intake of green tea inhibited increase of salivary chromogranin A after mental task stress loads. J Physiol Anthropol, 33(1), 20.
63. Youngstedt, S. D., O’Connor, P. J., Crabbe, J. B., & Dishman, R. K. (1998). Acute exercise reduces caffeine-induced anxiogenesis. Med Sci Sports Exerc, 30(5), 740-745.
64. Youngstedt, S. D., O’Connor, P. J., Crabbe, J. B., & Dishman, R. K. (2000). The influence of acute exercise on sleep following high caffeine intake. Physiol Behav, 68(4), 563-570.
65. Yousaf, S., Butt, M. S., Suleria, H. A., & Iqbal, M. J. (2014). The role of green tea extract and powder in mitigating metabolic syndromes with special reference to hyperglycemia and hypercholesterolemia. Food Funct, 5(3), 545-556.

Posted in Science

Hearty Cinnamon Almond Pancakes

Posted on August 07, 2014 by Skratch Labs | 0 Comments

Made with almond flour, these pancakes are gluten-free and lower in carbs than traditional pancakes. Skip the sugar crash and fuel up for morning rides with these hearty pancakes that have an ideal mix of carbs, protein, and fat. The batter will be thin and delicate, more like a crepe than a pancake.

Almond flour is just finely ground whole almonds. Most groceries now stock it in the baking goods aisle or with natural foods (one common brand is Bob’s Red Mill). You can make your own using a food processor or blender—just be sure not to grind the nuts too long or you’ll end up with almond butter!




TIME: 20 minutes

1 cup almond flour
2 eggs
¼ cup milk or water
2 tablespoons cooking oil
1 tablespoon honey or
agave nectar
a dash each of ground cinnamon and salt


toasted almonds
plain yogurt

  1. Mix together all ingredients in a bowl.
  2. Bring a lightly oiled sauté pan to medium-high heat. When pan is hot, pour batter to form pancakes, leaving ample space between each to allow batter to spread. Unlike traditional pancakes these will not bubble, so watch for the edges to brown, then gently flip over and brown the other side.

Serve hot, topped with toasted almonds, yogurt, or fresh fruit. Makes about 6 pancakes.


TIP: Even easier: If you’re not concerned about gluten, add ground almonds to your usual packaged pancake mix. Follow package directions from there.


NUTRITION DATA PER SERVING (3 pancakes) > Energy 557 cal • Fat 47 g • Sodium 447 mg • Carbs 23 g • Fiber 6 g • Protein 19 g


Click here to download the complete recipe

Posted in Recipes

Coconut Water - The Bizarro Sports Drink

Posted on July 14, 2014 by Allen Lim, PhD | 2 Comments

Coconut water is naturally sweet and high in the electrolyte potassium. So it’s not uncommon for people to ask about the use of coconut water as a real food sports drink. But, when assessing the use of coconut water as sports drink, what comes to mind is C.G. Jung’s idea of “shadows” – the aspects of our lives that are in actuality completely opposite of what we think or perceive. It’s an apt reference point, because if sports drinks have a dark shadow, it’s coconut water.  Coconut water is fine if you just want something real to drink when you’re not exercising or for short duration exercise (< 90 minutes or less) (1), but if you’re sweating a lot during prolonged exercise, it’s definitely the wrong choice.

In the realm of human physiology, coconut water is the exact opposite of what we need to replace the sweat we lose when we are exercising. The reason for this is that the primary electrolyte in coconut water is potassium, whereas the primary electrolyte in sweat is sodium. More specifically, 16 oz of coconut water contains 950 mg of potassium and only 50 mg of sodium. In contrast, 16 oz of sweat contains anywhere from 200 to 700 mg of sodium, and only about 50 to 110 mg of potassium (2,3) (Table 1).  


Coconut Water



Sodium (mg)



450 ± 250

Potassium (mg)



80 ± 30

Calcium (mg)



25 ± 17

Magnesium (mg)



6 ± 6

Table 1. Electrolyte Content in 16 oz of Coconut Water, Skratch Exercise Hydration Mix, and Sweat.

The high sodium and low potassium content of sweat reflects the relatively high sodium and low potassium concentration found in our blood or vascular space that feeds our sweat glands. This difference is due to the fact that pumps in our cell membranes that set up the chemical-electrical gradients across cells that allow proper cell function and communication, do so by pumping potassium into cells and sodium out of cells, making intracellular (inside cells) potassium levels very high compared to sodium, and extracellular (outside of cells) sodium levels very high compared to potassium.

Because water equilibrates between the major spaces across the body, which include our vascular space (blood vessels), extracellular space, and intracellular space, when we consume an excess of sodium we tend to shift water into our vascular space and when we consume an excess of potassium we tend to shift water into our cells. This is why, in some people, excess sodium consumption can raise blood pressure. Likewise, when we consume foods or liquids that are very high in potassium, we tend to increase our intracellular water stores. 

During exercise, however, increasing the water volume in our vascular space is what is critical to help provide the necessary blood volume to deliver oxygen, eliminate heat, and provide valuable fluid for sweat. So in the context of exercise, consuming water and ample sodium is much more important than consuming potassium, not just to replace what we lose in sweat, but to maintain an adequate blood volume to meet the increased demands on our circulatory system especially in the heat (4,5). In contrast, consuming coconut water or plenty of fruits and vegetables that are high in potassium along with water isn’t a bad strategy for rehydrating cells when recovering, though it’s important to remember that we don’t deplete nearly the same amount of potassium during exercise as we do sodium.  

In most cases, drinking a bottle or two of coconut water during exercise isn’t going to kill us, as our kidneys are pretty good at keeping our electrolyte concentrations in check, especially if consumption isn’t excessive. But it definitely isn’t going to help us during exercise compared to a good sports drink with adequate sodium. That said, drinking only coconut water for long periods of time while exercising in the heat is one of the rare situations that could lead to dangerous electrolyte imbalances within the body that may be extremely harmful. While, a lot has been written about the hyponatremia that can occur if we only drink water during prolonged and heavy exercise in the heat, drinking only coconut water can exacerbate the situation, since the excess potassium consumption only compounds the inadequate sodium replacement (6).  Thus, in situations where drinking water alone can be harmful, be assured that drinking only coconut water may be just as is or even more harmful (7).

Ultimately, coconut water is the exact opposite of what we need when we are sweating heavily during exercise. It’s like Bizarro – Superman’s opposite – a character that Alvin Schwartz, one of the original writers for the Superman strip, found inspiration for through C.G. Jung’s “shadow” archetype. Just like Bizarro and Superman, there are a lot of similarities between coconut water and the all-natural Exercise Hydration Mix on the surface – both contain the same amount of calories, both contain electrolytes, and both are made with real food ingredients. But don’t be fooled, when you take a closer look, the reality is that coconut water is the Bizarro sports drink. 


1. Kalman, D. S., Feldman, S., Krieger, D. R., & Bloomer, R. J. (2012). Comparison of coconut water and a carbohydrate-electrolyte sport drink on measures of hydration and physical performance in exercise-trained men. J Int Soc Sports Nutr, 9(1), 1. 


2. Shirreffs, S. M., & Maughan, R. J. (1997). Whole body sweat collection in humans: an improved method with preliminary data on electrolyte content. J Appl Physiol, 82(1), 336-341. 


3. Adams, R., Johnson, R. E., & Sargent, F. (1958). The osmotic pressure (freezing point) of human sweat in relation to its chemical composition. Q J Exp Physiol Cogn Med Sci, 43(3), 241-257. 


4. Sawka, M. N., & Montain, S. J. (2000). Fluid and electrolyte supplementation for exercise heat stress. Am J Clin Nutr, 72(2 Suppl), 564S-572S. 


5. Sharp, R. L. (2006). Role of sodium in fluid homeostasis with exercise. J Am Coll Nutr, 25(3 Suppl), 231S-239S. 


6. Schucany, W. G. (2007). Exercise-associated hyponatremia. Proc (Bayl Univ Med Cent), 20(4), 398-401. 


7. Noakes, T. D., Goodwin, N., Rayner, B. L., Branken, T., & Taylor, R. K. (1985). Water intoxication: a possible complication during endurance exercise. Med Sci Sports Exerc, 17(3), 370-375.




Posted in Science

1 2 3 9 Next »